Copied to
clipboard

G = C24.3D6order 192 = 26·3

2nd non-split extension by C24 of D6 acting via D6/C2=S3

non-abelian, soluble, monomial

Aliases: C24.3D6, C23.1Dic6, A4⋊C4⋊C4, (C2×C4).5S4, A41(C4⋊C4), C2.10(C4×S4), (C2×A4).5D4, (C2×A4).1Q8, C2.1(A4⋊Q8), (C23×C4).3S3, C23.4(C4×S3), C22⋊(Dic3⋊C4), C22.14(C2×S4), C2.1(A4⋊D4), C23.15(C3⋊D4), (C22×A4).4C22, (C2×C4×A4).1C2, (C2×A4⋊C4).1C2, (C2×A4).4(C2×C4), SmallGroup(192,970)

Series: Derived Chief Lower central Upper central

C1C22C2×A4 — C24.3D6
C1C22A4C2×A4C22×A4C2×A4⋊C4 — C24.3D6
A4C2×A4 — C24.3D6
C1C22C2×C4

Generators and relations for C24.3D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e6=f2=a, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=ede-1=cd=dc, ece-1=d, df=fd, fef-1=be5 >

Subgroups: 394 in 109 conjugacy classes, 23 normal (21 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, A4, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C24, C2×Dic3, C2×C12, C2×A4, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, Dic3⋊C4, A4⋊C4, A4⋊C4, C4×A4, C22×A4, C23.8Q8, C2×A4⋊C4, C2×C4×A4, C24.3D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, Dic6, C4×S3, C3⋊D4, S4, Dic3⋊C4, C2×S4, A4⋊Q8, C4×S4, A4⋊D4, C24.3D6

Character table of C24.3D6

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H4I4J4K4L6A6B6C12A12B12C12D
 size 111133338226612121212121212128888888
ρ11111111111111111111111111111    trivial
ρ2111111111-1-1-1-1-1111-1-1-11111-1-1-1-1    linear of order 2
ρ3111111111-1-1-1-11-1-1-1111-1111-1-1-1-1    linear of order 2
ρ41111111111111-1-1-1-1-1-1-1-11111111    linear of order 2
ρ511-1-1-111-11-ii-iii1-1-1-i-ii1-1-11-iii-i    linear of order 4
ρ611-1-1-111-11-ii-ii-i-111ii-i-1-1-11-iii-i    linear of order 4
ρ711-1-1-111-11i-ii-i-i1-1-1ii-i1-1-11i-i-ii    linear of order 4
ρ811-1-1-111-11i-ii-ii-111-i-ii-1-1-11i-i-ii    linear of order 4
ρ92-22-22-22-220000000000002-2-20000    orthogonal lifted from D4
ρ1022222222-1-2-2-2-200000000-1-1-11111    orthogonal lifted from D6
ρ1122222222-1222200000000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122-2-22-2-2222000000000000-22-20000    symplectic lifted from Q8, Schur index 2
ρ132-2-22-2-222-10000000000001-1133-3-3    symplectic lifted from Dic6, Schur index 2
ρ142-2-22-2-222-10000000000001-11-3-333    symplectic lifted from Dic6, Schur index 2
ρ1522-2-2-222-2-1-2i2i-2i2i0000000011-1i-i-ii    complex lifted from C4×S3
ρ1622-2-2-222-2-12i-2i2i-2i0000000011-1-iii-i    complex lifted from C4×S3
ρ172-22-22-22-2-1000000000000-111--3-3--3-3    complex lifted from C3⋊D4
ρ182-22-22-22-2-1000000000000-111-3--3-3--3    complex lifted from C3⋊D4
ρ193333-1-1-1-10-3-3111-11-1-11-110000000    orthogonal lifted from C2×S4
ρ203333-1-1-1-1033-1-111-11-11-1-10000000    orthogonal lifted from S4
ρ213333-1-1-1-10-3-311-11-111-11-10000000    orthogonal lifted from C2×S4
ρ223333-1-1-1-1033-1-1-1-11-11-1110000000    orthogonal lifted from S4
ρ2333-3-31-1-1103i-3i-ii-i11-1-iii-10000000    complex lifted from C4×S4
ρ2433-3-31-1-1103i-3i-iii-1-11i-i-i10000000    complex lifted from C4×S4
ρ2533-3-31-1-110-3i3ii-i-i-1-11-iii10000000    complex lifted from C4×S4
ρ2633-3-31-1-110-3i3ii-ii11-1i-i-i-10000000    complex lifted from C4×S4
ρ276-66-6-22-2200000000000000000000    orthogonal lifted from A4⋊D4
ρ286-6-6622-2-200000000000000000000    symplectic lifted from A4⋊Q8, Schur index 2

Smallest permutation representation of C24.3D6
On 48 points
Generators in S48
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 47)(2 48)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 36)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)
(1 18)(2 13)(3 9)(4 21)(5 16)(6 12)(7 24)(8 19)(10 15)(11 22)(14 20)(17 23)(25 31)(26 44)(27 39)(28 34)(29 47)(30 42)(32 38)(33 45)(35 41)(36 48)(37 43)(40 46)
(1 24)(2 8)(3 20)(4 15)(5 11)(6 23)(7 18)(9 14)(10 21)(12 17)(13 19)(16 22)(25 43)(26 38)(27 33)(28 46)(29 41)(30 36)(31 37)(32 44)(34 40)(35 47)(39 45)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 7 20)(2 30 8 36)(3 24 9 18)(4 28 10 34)(5 22 11 16)(6 26 12 32)(13 48 19 42)(15 46 21 40)(17 44 23 38)(25 41 31 47)(27 39 33 45)(29 37 35 43)

G:=sub<Sym(48)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,36)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,18)(2,13)(3,9)(4,21)(5,16)(6,12)(7,24)(8,19)(10,15)(11,22)(14,20)(17,23)(25,31)(26,44)(27,39)(28,34)(29,47)(30,42)(32,38)(33,45)(35,41)(36,48)(37,43)(40,46), (1,24)(2,8)(3,20)(4,15)(5,11)(6,23)(7,18)(9,14)(10,21)(12,17)(13,19)(16,22)(25,43)(26,38)(27,33)(28,46)(29,41)(30,36)(31,37)(32,44)(34,40)(35,47)(39,45)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,30,8,36)(3,24,9,18)(4,28,10,34)(5,22,11,16)(6,26,12,32)(13,48,19,42)(15,46,21,40)(17,44,23,38)(25,41,31,47)(27,39,33,45)(29,37,35,43)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,47)(2,48)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,36)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,18)(2,13)(3,9)(4,21)(5,16)(6,12)(7,24)(8,19)(10,15)(11,22)(14,20)(17,23)(25,31)(26,44)(27,39)(28,34)(29,47)(30,42)(32,38)(33,45)(35,41)(36,48)(37,43)(40,46), (1,24)(2,8)(3,20)(4,15)(5,11)(6,23)(7,18)(9,14)(10,21)(12,17)(13,19)(16,22)(25,43)(26,38)(27,33)(28,46)(29,41)(30,36)(31,37)(32,44)(34,40)(35,47)(39,45)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,14,7,20)(2,30,8,36)(3,24,9,18)(4,28,10,34)(5,22,11,16)(6,26,12,32)(13,48,19,42)(15,46,21,40)(17,44,23,38)(25,41,31,47)(27,39,33,45)(29,37,35,43) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,47),(2,48),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,36),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35)], [(1,18),(2,13),(3,9),(4,21),(5,16),(6,12),(7,24),(8,19),(10,15),(11,22),(14,20),(17,23),(25,31),(26,44),(27,39),(28,34),(29,47),(30,42),(32,38),(33,45),(35,41),(36,48),(37,43),(40,46)], [(1,24),(2,8),(3,20),(4,15),(5,11),(6,23),(7,18),(9,14),(10,21),(12,17),(13,19),(16,22),(25,43),(26,38),(27,33),(28,46),(29,41),(30,36),(31,37),(32,44),(34,40),(35,47),(39,45),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,7,20),(2,30,8,36),(3,24,9,18),(4,28,10,34),(5,22,11,16),(6,26,12,32),(13,48,19,42),(15,46,21,40),(17,44,23,38),(25,41,31,47),(27,39,33,45),(29,37,35,43)]])

Matrix representation of C24.3D6 in GL5(𝔽13)

120000
012000
001200
000120
000012
,
120000
012000
00100
00010
00001
,
10000
01000
00100
000120
000012
,
10000
01000
001200
00010
000012
,
103000
107000
000120
00001
00800
,
55000
08000
00008
00080
00800

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,12],[10,10,0,0,0,3,7,0,0,0,0,0,0,0,8,0,0,12,0,0,0,0,0,1,0],[5,0,0,0,0,5,8,0,0,0,0,0,0,0,8,0,0,0,8,0,0,0,8,0,0] >;

C24.3D6 in GAP, Magma, Sage, TeX

C_2^4._3D_6
% in TeX

G:=Group("C2^4.3D6");
// GroupNames label

G:=SmallGroup(192,970);
// by ID

G=gap.SmallGroup(192,970);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,56,141,36,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^6=f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=e*d*e^-1=c*d=d*c,e*c*e^-1=d,d*f=f*d,f*e*f^-1=b*e^5>;
// generators/relations

Export

Character table of C24.3D6 in TeX

׿
×
𝔽